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LETTER TO THE EDITOR 

Conformal properties of primary fields in a q-deformed theory 

C H Oht  and K SinghS 
Department of Physics, Faculty of Science, National University of Singapore, Lower Kent 
Ridge. Singapore 051 I,  Repbulic of Singapore 

Received IO December 1991 

Abstract. We examine some of the standard features of primary fields in the lramework 
of a q-deformed conformal field theory. By introducing a q - 0 ~ ~  between the energy- 
momentum tensor and a primary field, we derive the q-analogue of the eonformal Ward 
identities for correlation functions o f  primary fields. We also obtain solutions to these 
identities for the two-point function. 

In recent years, there has been growing interest in the study of quantized universal 
enveloping algebras. Loosely called quantum groups, they first appeared in the study 
of the quantum Yang-Baxter equations related to the inverse scattering problem [I]. 
Subsequently, it was shown that they can be obtained from representations of mathe- 
matical structures called quasi-triangular Hopf algebras [2]. These structures, which 
often depend on a parameter q, can be regarded as q-deformations of Lie algebras in 
the sense that as q+ 1 the algebra reduces to the usual Lie algebra. 

Exp!ici: :ea!iza!incs of some nfthese quantum grnaps have been ob!ained by many 
authors [2-41. For instance the Jordan-Schwinger approach often used in the study 
of angular momentum algebra has been suitably generalized to give bosonic (q- 
oscillator) representations of the quantum group SUJ2) [4]. More recently, Curtright 
and Zachos [ 5 ]  have constructed a q-analogue of the centreless Virasoro algebra by 
using a differential realization of SU,(l, 1) (see also [ 6 ] ) .  The central extension to this 
algebra has been furnished by Aizawa and Sato [7]. In fact, they have also found a 
q-deformed operator product expansion (OPE) between two energy-momentum tensors 
which realizes this algebra. This naturally paves the way for a q-deformed conformal 
field theory. 

In this letter we study the properties of primary fields in the spirit of [7]. Here we 
re-examine some of the well known issues pertaining to standard conformal field theory 
(CFT) [SI in the context of such a q-deformed theory. In particular, we introduce a 
POPE o i  the energy-momentum tensor with a primary iieia which extends the q-ow 
of [7] to primary fields of arbitrary conformal weights. The deformation reflected in 
this POPE is shown to be equivalent to the one used by Chaichan er al [9]. Using 
arguments paralleling those used in standard CIT, we obtain the q-analogue of the 
conformal Ward identity and the projective Ward identities for correlation functions 
of primary fields. In particular, for the two-point function, it is shown that these Ward 
iden!ities do not cni:ce!y determine i! when 141 = !. Using !he q-0~5 we .!so rea!ize 
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the algebra between the modes of the energy-momentum tensor and those of a 
holomorphic primary field. 

We begin by summarizing some basic features of standard c m  [8, IO] that will be 
used or modified later. Consider a primary field @ ( z ,  f) with conformal weights h, 6. 
It is defined by its transformation under z + z ' = f ( z ) ,  f + f ' = f ( i ) :  

wheref(z) and f ( Z )  are arbitrary holomorphic and antiholomorphic functions respec- 
tively. When the transformation is infinitesimal, i.e. f ( z )  = z +  E ( Z )  and f ( Z )  = 
i + Z + E ( i ) ,  then 

@(z ,  I )+@' ( z ,  i ) = ( J f ) h ( ~ ) ~ @ ( f ( ~ ) , f ( f ) )  (1) 

@ ' ( ~ , Z ) = @ ( z , i ) + A , ~ @ ( z , f )  

with 

AS,$(z, f ) = ( h d ~ + ~ J ) @ ( z ,  f ) + ( & + E s ) @ ( z ,  i). (26) 
In particular when E ( Z )  = E$+'  and E(?) = EnZn+' where E,  and En are small constants, 
we have 

A n @ ( z , i ) = ~ . S . @ ( z , i ) + ~ , , S , @ ( z , 2 )  (30) 
where 

S,@(z, f ) = ( z a + h ( n + l ) - n ) z " @ ( z ,  i) 

,Sn@(z, 2)  = ( i a + i ( f l +  1) - n ) i " @ ( z ,  Z). 
In the following, we will only consider the holomorphic terms with similar results 
holding for the antiholomorphic ones. 

In a quantum theory, the variation in @(z, 2) is implemented by the 'equal-time' 
commutator: 

where T ( z )  is the holomorphic component of the energy-momentum tensor. On the 
z-plane, different times correspond to concentric circles of different radii and the notion 
of time ordering is replaced by that of radial ordering: 

In this scheme the 'equal-time' commutator is given by [lo] 

dz  

where the last integral is taken around all the poles in the OPE of T ( z ) @ ( w ,  6') which 
we assume are located on the IzI = IwI  contour. Indeed, by comparison with (36) one 
can infer that 

h @ ( w ,  * ) + J @ ( w ,  *) 
T ( z ) @ ( w ,  *)= +regular terms. 

( Z - w y  ( 2 - w )  
(7) 
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Now a q-deformation of the theory is achieved by replacing (36) and (3c) by the 
corresponding q-analogues. For this purpose we consider the deformation as defined 
by Chaichan et nl [9]: 

(8) &@(z, Z)+ S:@(Z ,  I )  = [zJ+ h ( n +  l ) -n]z"@(z,  I )  

which essentially replaces the bracket in ( 3 b )  by a q-bracket defined by 

Equation (8) thus serves as a definition of a primary field in a q-deformed theory. We 
will now implement this variation as an 'equal-time' commutator as in (6). To this 
end, we introduce a q-om of T ( z )  with @(w, *), which we write as 

( T ( z ) @ ( w ,  

J ~ , @ ( w ,  *)+regular terms +- 1 

( 2 - w )  

where J e  is the ?-analogue of the derivative: 

Using this definition for the q-derivative, we can also rewrite the Q-OPE as 

which shows that it is singular at the points z = wq*h. It is easy to verify that the above 
OPE leads to the correct variation in @, by evaluating the integral in (6) with C,  taken 
as a contour encircling the points wqh and wq-h. Before proceeding further, let us 
make a few observations. 

(1) It is evident from the above expression that there are poles present at two 
points rather than one. These poles are boih o i  order i, uniike the undeiormed case 
where the z = w pole is of order 2. It is interesting to note, however, that in the limit 
q +  1 these poles will coalesce to form a pole of order 2 at z = w. In fact, in the limit 
q +  1, our q-om reduces to the standard one (7). 

(2) Recall that the 'equal-time' commutator in (6) was evaluated as a difference 
of two integrals with contours which are concentric and close to the IzI = I  wI contour 
bat nne having radius IzI>Iu ' I  and the other IzI<Iu>I. -r??ey combine into I sicg!e 
contour which is taken to be a small circle centred around the singular point (I = w ) .  
For this scheme to be applicable here, we must require that the two poles lie on the 
111 = IwI contour, since otherwise this poles will not make any contributions to the 
integral. This means that we must restrict ourselves to the case when 141 = 1, i.e. q 
should be taken as a pure phase (4-e'""). 

(3) It is worth noting that the variation in @ obtained by our 9-OPE is similar to 
the one used by Chaichan et nl only for the case E ( Z )  = z"+' .  For arbitrary E ( z ) ,  their 
variation is assumed to be of the form 

@D(z, z) = e ( z ) ' - h a : ( & ( z ) h @ ( z ,  2)) (13)  
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while ours is given by 

= &(zqh)J,'@(z, i ) + [ h ] J , ' h ~ ( ~ ) @ ( z q - l ,  2). (14) 

Both, however, reduce to (8) when E ( Z )  is taken to be 
(4j -W%en ir = 2, our expression is simiiar to tine one given by Aizawa and Sato i7j 

for the OPE oftwo energy momentum tensors when the central charge in their expression 
is taken as zero. 

With the q-ope defined a5 above, we can write down the q-Ward identities for the 
correlation functions of primary Gelds. We begin by considering the action of the 
generator of infinitesimal conformal transformations on the correlation of n primary 
iieicis { @ , ( w 8 ,  ~ , ) j  wiih corresponding conformai weights h,, 6 ( i =  i ,i , .  . . nj :  

(Thecontour C,encirclesall thepoints(wiqhk) k = *l}j=l,,,.,,..)Intheaboveexpression, 
the correlation function ( . . . ) q  is taken relative to the 'in' (IO),) and the 'out' (,(Ol) 
vacuums which are defined by requiring that 

L,IO), = 0 m a - 1  (16a) 

q(ol L m  = 0 m=Zl  (166) 
where 

are modes in the expansion, 

T ( z )  = 1 L,zP-' .  (18) 
m s z  

Note that conditions (16a) and (166) ensure the regularity of T(z)lO), and its adjoint 
at z =o  and =m. By anaiyticiiy, the coniour 2, in expression (is; can be tefomied 
to a sum of n contours with each contour C. surrounding the points, {w,qh, wuiq-h]. 
Then as a consequence of the q-om, we have 

where the differential operator 2:& is given by 

Furthermore, since ~ ( z )  is arbitrary, we can write 
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which is the unintegrated form of the q-Ward identity. It is easy to see that it reduces 
to the usual one as q + 1. 

Next let us consider the q-analogue of the projective Ward identities. From ( 1 6 a )  
and ( 1 6 6 )  it is easy to see that the generators &,*, annihilate both the 'in' and the 
'out' vacuums. On substituting E ( Z )  = zm+' for m = -1,O, 1 into (19) and integrating, 
we have 

1 w ~ ' [ w , J w , l ( ~ , ( w , , * ~ ) . . , @ " ( w ~ ,  *&=O ( 2 2 0 )  

1 [WzJw,+h, l (@i(wi ,  * i ) . . . @ n ( w , , ,  * n ) ) q = O  ( 2 2 6 )  

1 w , [ w , J w , + 2 h t l ( @ , ( w i ,  * i ) . . . Q n ( w n ,  *,,)),=O ( 2 2 c )  

I = ,  

r = ,  

I = ,  

for any n-point function. These are the q-analogues of the projective Ward identities. 
Now, it is well known that in standard CFT the two-point and three-point functions 
are severely constrained by the Ward identities. In fact, they are uniquely determined 
up to a normalization constant. The situation for the q-deformed case is not quite the 
same. Here when 141 = 1 the q-Ward identities d o  not uniquely specify them as we will 
illustrate below. For this purpose assume an ansatz for the correlation function of two 
primary fields @ , ( w , ,  E+), 0 1 ( w 2 ,  C2) with conformal weight h , ,  h2 respectively to be 
of the form 

where 

" [ n ] !  
( w , - w 2 ) i =  n (w, -w,q"- '*+l )=  1 W ; - * ( - - W ~ ) *  ( 2 4 )  

k = l  [ n - k ] ! [ k ] !  

is the q-analogue of the distance function ( w ,  - w2)" [ 7 ] .  On substitution into ( 2 2 a ) ,  
( 2 2 b )  and ( 2 2 c )  we obtain the following conditions: 

[ h ,  - n] + [ h 2 ]  = O  ( 2 5 a )  

[ h 2 -  n] + [ h , ]  = O  ( 2 5 b )  
[ 2 h ,  - n] = O  ( 2 5 ~ )  
[ 2 h 2 -  n ]  = O  

[2hJ - [ 2 h J  = 0. 

Apart from the obvious solution 

h,  = h2= n J 2  
we also have for q = einol, 

h , =  n J 2 f  k J a  ( 2 7 ~ )  
h,  = n / 2 +  Ila ( 2 7 6 )  

where k and I are arbitrary integers which are either both even or both odd. Adding 
the two we have 

n = h l + h 2 - ( k + l ) J a  ( 2 8 )  
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and this means that n which characterizes the solution is not unique by virtue of the 
fact that k and I are arbitrary. 

It is also interesting to study the commutator algebra (or rather 'quommutator') of 
the generators { L n }  with the modes {&,} of a primary field. Consider a holomorphic 
primary field with conformal weights ( h , O ) ,  

@(w)= 4,"W-m-h (29) 
m E Z - h  

with the modes {+,,,) satisfying 

Here we would like to evaluate the bracket 

r L,, h l  = (Wdq - (&LJq (31) 
where the terms ( ) q  are defined via the q-product of two field operators A(z )  and 
B(w) VI: 

= 4m-"+h-2 L d m  
where C ,  and C,  are contours ahout the origin such that C2c  C , .  Similarly 

4 A .  (m-n+h-2 )  
= 9- 

[L" ,  4 m l =  4 

Then by combining (33) and (34), the bracket in (31) can he re-expressed as 
lm-"+h- , )  L"& - 4- 4,"L". m-n+h-2 

To evaluate this bracket, we use the q-OPE: 

= [n(h - i j  -mj&+,,, 
which gives the 'quommutator' of L. with +m, 

~ , L . , = [ n ( h - l ) - m l ~ " + , .  m - n + h - 2 )  9m-hth-2 L"& - 4-1 

Again, we can see that this reduces to the standard result as q -t 1. It is also interesting 
to note that if we identify & with L, with h = 2 then the above algebra corresponds 
to the q-deformed centreiess Virasoro aigebra, 

L A  = [ n  - mil+, (38) m - " L J ,  - q - l m - n )  4 

proposed by Curtright and Zachos [ 5 ] .  
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Finally a few comments on the primary and descendant states. We define the 
primary state corresponding to a primary field @(w, *) of weights (h, 6) as 

Ih, 6)q = W . V - 0  lim @(w,  *)IO), (39) 

in close analogy with the standard case. In particular, for a halomorphic field with 
weights (h ,  0) the primary state Ih), = Ih, O), can also be defined as 

lh)q =4-h10)q. (40) 

Note that the modes I+,,,} for m>-h+l  must annihilate the 'in' vacuum as a 
requirement for the regularity of O( w)lO), at w = 0. Using this fact together with (160) 
and (37) we have 

L.lh), = 0 forn>O (41) 

and 

Lolh), = q2[h1lh),. (42) 

The q-descendant states are then constructed by subjecting the primary states to 
operations of L.'s for n < 0: 

l h ; k ~ , k z . . . k " ) ~ =  L - ~ : L - ~ ~ . . . ~ - ~ ~ l h ) ~ .  (43) 

In passing, we would like to remark that it would also he interesting to study the 
conformal properties of secondary fields which give rise to the above q-descendant 
states. These together with the primary fields would then constitute a basis for the 
study of q-string theory. 
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